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Pootle FS app provides a plugin framework for synchronizing external filesystems containing localisation files.

An FS can be either a local filesystem or a VCS system such as git, svn, hg or cvs.

The app uses a configuration syntax to create associations between Pootle Stores and file stores. The stores can then
be synced and changes in either can be tracked.

Syncing is a 2-step process in which changes to Stores/files are initially staged with any or all of:

• add_translations

• fetch_translations

• rm_translations

• merge_translations

Changes to previously synced Stores/files are automatically staged for synchronisation, where no conflict exists.

Once the desired changes have been staged sync_translations is called to perform the synchronisation.

Contents 1



pootle𝑓𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑙𝑎𝑡𝑒𝑠𝑡

2 Contents



CHAPTER 1

Pootle FS Configuration

1.1 Configuring your project in Pootle

To set an FS plugin for a project, use the set_fs command:

pootle fs MYPROJECT set_fs FS_TYPE FS_URL

MYPROJECT must the name of a valid project in Pootle.

FS_TYPE should be an installed and registered FS plugin type - such as git or local.

FS_URL must be a URL specific to the type of FS plugin you are using.

1.2 Creating a .pootle.ini on your filesystem

When pootle_fs first pulls your filesystem it looks for a file .pootle.ini to set up the configuration of your project.

The configuration file uses the ini syntax.

You can see the current configuration for your project as follows:

pootle fs MYPROJECT config

1.3 Updating the configuration

If you make changes to your .pootle.ini file they do not take affect until you have updated the configuration:

pootle fs MYPROJECT config --update
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1.4 Defining a translation_path

1.5 Defining a directory path
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CHAPTER 2

Pootle filesystem Workflow

2.1 Syncing previously synced Stores/files

When a Store and corresponding file have been synced previously, they are automatically staged for syncing if either
changes.

This is not the case however if both have changed - see resolving conflicts section for further information.

To re-sync Stores and files:

(env) $ pootle fs myproject sync_translations

2.2 Pulling new translation files from the filesystem to Pootle

The workflow for bringing new translations from the filesystem into Pootle is:

(env) $ pootle fs myproject fetch_translations
(env) $ pootle fs myproject sync_translations

Where fetch_translations will stage the new translations, and sync_translations will actually sync to
the database.

Note: You can fetch/sync specific Stores or files, or groups of them using the -P and -p options to
fetch_translations and sync_translations.

2.3 Pushing new translation files from Pootle to the filesystem

The workflow for sending translations from Pootle to the filesystem:
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(env) $ pootle fs myproject add_translations
(env) $ pootle fs myproject sync_translations

Where add_translations will stage the new translations, and sync_translations will actually sync to the
filesystem.

Note: You can add/sync specific Stores or files, or groups of them using the -P and -p options to add_translations
and sync_translations.

2.4 Resolving conflicts

Conflicts can occur if both a Pootle Store and the corresponding file have changed.

Conflict can also arise if a new Pootle Store is added and a matched file has been added in the filesystem.

2.4.1 Resolving conflicts - overwriting Pootle with filesystem version

If you wish to keep the version that is currently on the filesystem, discarding all changes in Pootle, you can do the
following:

(env) $ pootle fs myproject fetch_translations --force
(env) $ pootle fs myproject sync_translations

2.4.2 Resolving conflicts - overwriting filesystem with Pootle version

If you wish to keep the version that is currently in Pootle, discarding all changes in the filesystem, you can do the
following:

(env) $ pootle fs myproject add_translations --force
(env) $ pootle fs myproject sync_translations

2.4.3 Resolving conflicts - merging

In order to merge the changes made in both Pootle and the filesystem, you can:

(env) $ pootle fs myproject merge_translations
(env) $ pootle fs myproject sync_translations

When merging if there are conflicts in translation units the default behaviour is to keep the filesystem version, and
make the Pootle version into a suggestion.

You can reverse this behaviour as follows:

(env) $ pootle fs myproject merge_translations --pootle-wins
(env) $ pootle fs myproject sync_translations
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2.4.4 Removing files/Stores

Sometimes a Store or file is unmatched on the other side, either because it is newly added or because a Store or
file has been removed.

You can remove Stores or files that do not have a corresponding match:

(env) $ pootle fs myproject rm_translations
(env) $ pootle fs myproject sync_translations

This will not affect any other Stores or files.

2.4. Resolving conflicts 7
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CHAPTER 3

Pootle FS commands

Pootle FS commands
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CHAPTER 4

fs command

Get FS info for all projects

pootle fs
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CHAPTER 5

set_fs subcommand

Set the FS for a project. Project must exist in Pootle.

pootle fs myproject set_fs git git@github.com:translate/myprojrepo
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CHAPTER 6

info subcommand

Get the FS info for a project. This is the default command - so info can be ommitted.

pootle fs myproject info

or...

pootle fs myproject
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CHAPTER 7

config subcommand

Print out the project FS configuration

pootle fs myproject config

--update -u Update the configuration from the FS .pootle.ini file

17



pootle𝑓𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑙𝑎𝑡𝑒𝑠𝑡

18 Chapter 7. config subcommand



CHAPTER 8

status subcommand

List the status of files in Pootle and FS

pootle fs myproject status
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CHAPTER 9

fetch_translations subcommand

Pull the FS repository if required, and on reading the .pootle.ini configuration file, create FSStore objects to
track the associations.

pootle fs myproject fetch_translations

This command is the functional opposite of the add_translations command.

This command does not add any translation files in the FS - for that you need to sync_translations.

--force Stage files from FS that are conflicting
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CHAPTER 10

add_translations subcommand

Add translations from Pootle into FS, using an optional pootle_path argument to filter which translations to add.

This command is the functional opposite of the fetch_translations command.

If you use the --force option it will add new translations from Pootle that are already present in the FS.

This command does not add any translation files in the FS - for tht you need to push_translations.

--force Stage files from Pootle that are conflicting
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CHAPTER 11

merge_translations subcommand

Stage for merging any matched Stores/files that have either both been added or have both been updated

pootle fs myproject merge_translations

--pootle-wins Use the Pootle version for units that have conflicting changes.
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CHAPTER 12

rm_translations subcommand

Stage for removal any matched Stores/files that do not have a corresponding Store/file in Pootle/FS.

pootle fs myproject rm_translations
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CHAPTER 13

sync_translations subcommand

Synchronize translations between FS and Pootle:

• Create stores in Pootle where they dont exist already

• Update exisiting stores from FS translation file

• Create files where not present

• Update existing files where Stores have changed

• Remove files/Stores staged for removal

pootle fs myproject sync_translations
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CHAPTER 14

Path options

--pootle_path -P Only show/affect files where the pootle_path matches a given file glob.

--path -p Only show/affect files where the FS path matches a given file glob.
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CHAPTER 15

Pootle FS status

Possible status

conflict Both the pootle revision has changed since last sync and the latest_hash of the file has changed. The next
step would be to fetch_translations or add_translations using --force to keep the FS version
or Pootle version respectively.

conflict_untracked A conflict can also arise if a file on the FS has status fs_untracked and a match-
ing Store has status pootle_untracked in this case you can use either fetch_translations or
add_translations with --force depending on whether you want to keep the FS file or the Store.

pootle_untracked A new store has been added in Pootle and matches a translation_path in .
pootle.ini, but does not have any StoreFS sync configuration. The next step would be to use
add_translations to add a configuration.

pootle_added A new Store has been created in Pootle and has been staged using add_translations. It
has not yet been synced and does not exist in the FS. The next step would be to sync_translations to
sync this Store

pootle_changed A Store has changed in Pootle since the last sync. The next step would be to use
sync_translations to push these changes to the FS.

pootle_removed A previously synced Store has been removed. The next step is would be to either use
fetch_translations --force to restore the FS version, or to use rm_translations to stage for
removal from FS.

fs_untracked A new file has been added in FS and matches a translation_path in .pootle.ini, but
does not have any StoreFS sync configuration. The next step would be to use fetch_translations to
add a configuration. Alternatively, you can use rm_translations to stage for removal from FS.

fs_added A new file has been created in FS and has been staged using fetch_translations. It has not yet
been synced. The next step would be to sync_translations to create and sync this Store

fs_changed A file has changed in FS since the last sync. The next step would be to use sync_translations
to push these changes to the FS.

fs_removed A previously synced file has been removed from the FS. The next step is would be to either use
add_translations --force to restore the Pootle version, or to use rm_translations to stage for
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removal from Pootle.

merge_fs Merge Stores/files that have both been updated. If there are conflicting units use the translation target
from the FS.

merge_pootle Merge Stores/files that have both been updated. If there are conflicting units use the translation
target from the Pootle.

to_remove A file or Store that does not have a corresponding Store/file that has been staged for removal.

both_removed A previously synced file has been removed from the FS and Pootle - effectively orphaned. We may
be able to use some kind of garbage collection to prevent this happening.
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CHAPTER 16

Pootle FS Git plugin

16.1 Installation

Currently only available for developer install:

https://github.com/translate/pootle_fs_git

The core pootle_fs app is also required (also dev only):

https://github.com/translate/pootle_fs

Currently also requires the no_mtime branch of pootle:

https://github.com/phlax/pootle/tree/no_mtime

16.2 Pootle configuration

(env) $ pootle fs MYPROJECT set_fs git GIT_URL

MYPROJECT should be the name of a project in your Pootle site.

GIT_URL should be git ssh url.

16.3 Git authentication

Currently only ssh authentication is supported.

The user running the pootle commands therefore must have a working ssh environment and read/write access to the
git repository in order to synchronize.
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16.4 Custom .pootle.ini options

When using the git pootle_fs plugin there are some git-specific options

[default]
commit_message = "A custom commit message..."
author_name = "My Self"
author_email = "me@my.domain"
committer_name = "Pootle Server"
committer_email = "pootle@my.server"

16.5 Further reading

• Workflow

• Status

• Commands
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