
pootle𝑓𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
Release latest

Nov 03, 2017





Contents

1 Pootle FS Configuration 3

2 Pootle filesystem Workflow 5

3 Pootle FS commands 9

4 fs command 11

5 set_fs subcommand 13

6 info subcommand 15

7 config subcommand 17

8 status subcommand 19

9 fetch_translations subcommand 21

10 add_translations subcommand 23

11 merge_translations subcommand 25

12 rm_translations subcommand 27

13 sync_translations subcommand 29

14 Path options 31

15 Pootle FS status 33

16 Pootle FS Git plugin 35

i



ii



pootle𝑓𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑙𝑎𝑡𝑒𝑠𝑡

Pootle FS app provides a plugin framework for synchronizing external filesystems containing localisation files.

An FS can be either a local filesystem or a VCS system such as git, svn, hg or cvs.

The app uses a configuration syntax to create associations between Pootle Stores and file stores. The stores can then
be synced and changes in either can be tracked.

Syncing is a 2-step process in which changes to Stores/files are initially staged with any or all of:

• add_translations

• fetch_translations

• rm_translations

• merge_translations

Changes to previously synced Stores/files are automatically staged for synchronisation, where no conflict exists.

Once the desired changes have been staged sync_translations is called to perform the synchronisation.

Contents 1



pootle𝑓𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑙𝑎𝑡𝑒𝑠𝑡

2 Contents



CHAPTER 1

Pootle FS Configuration

1.1 Configuring your project in Pootle

To set an FS plugin for a project, use the set_fs command:

pootle fs MYPROJECT set_fs FS_TYPE FS_URL

MYPROJECT must the name of a valid project in Pootle.

FS_TYPE should be an installed and registered FS plugin type - such as git or local.

FS_URL must be a URL specific to the type of FS plugin you are using.

1.2 Creating a .pootle.ini on your filesystem

When pootle_fs first pulls your filesystem it looks for a file .pootle.ini to set up the configuration of your project.

The configuration file uses the ini syntax.

You can see the current configuration for your project as follows:

pootle fs MYPROJECT config

1.3 Updating the configuration

If you make changes to your .pootle.ini file they do not take affect until you have updated the configuration:

pootle fs MYPROJECT config --update

3



pootle𝑓𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑙𝑎𝑡𝑒𝑠𝑡

1.4 Defining a translation_path

1.5 Defining a directory path

4 Chapter 1. Pootle FS Configuration



CHAPTER 2

Pootle filesystem Workflow

2.1 Syncing previously synced Stores/files

When a Store and corresponding file have been synced previously, they are automatically staged for syncing if either
changes.

This is not the case however if both have changed - see resolving conflicts section for further information.

To re-sync Stores and files:

(env) $ pootle fs myproject sync_translations

2.2 Pulling new translation files from the filesystem to Pootle

The workflow for bringing new translations from the filesystem into Pootle is:

(env) $ pootle fs myproject fetch_translations
(env) $ pootle fs myproject sync_translations

Where fetch_translations will stage the new translations, and sync_translations will actually sync to
the database.

Note: You can fetch/sync specific Stores or files, or groups of them using the -P and -p options to
fetch_translations and sync_translations.

2.3 Pushing new translation files from Pootle to the filesystem

The workflow for sending translations from Pootle to the filesystem:

5



pootle𝑓𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑙𝑎𝑡𝑒𝑠𝑡

(env) $ pootle fs myproject add_translations
(env) $ pootle fs myproject sync_translations

Where add_translations will stage the new translations, and sync_translations will actually sync to the
filesystem.

Note: You can add/sync specific Stores or files, or groups of them using the -P and -p options to add_translations
and sync_translations.

2.4 Resolving conflicts

Conflicts can occur if both a Pootle Store and the corresponding file have changed.

Conflict can also arise if a new Pootle Store is added and a matched file has been added in the filesystem.

2.4.1 Resolving conflicts - overwriting Pootle with filesystem version

If you wish to keep the version that is currently on the filesystem, discarding all changes in Pootle, you can do the
following:

(env) $ pootle fs myproject fetch_translations --force
(env) $ pootle fs myproject sync_translations

2.4.2 Resolving conflicts - overwriting filesystem with Pootle version

If you wish to keep the version that is currently in Pootle, discarding all changes in the filesystem, you can do the
following:

(env) $ pootle fs myproject add_translations --force
(env) $ pootle fs myproject sync_translations

2.4.3 Resolving conflicts - merging

In order to merge the changes made in both Pootle and the filesystem, you can:

(env) $ pootle fs myproject merge_translations
(env) $ pootle fs myproject sync_translations

When merging if there are conflicts in translation units the default behaviour is to keep the filesystem version, and
make the Pootle version into a suggestion.

You can reverse this behaviour as follows:

(env) $ pootle fs myproject merge_translations --pootle-wins
(env) $ pootle fs myproject sync_translations

6 Chapter 2. Pootle filesystem Workflow



pootle𝑓𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑙𝑎𝑡𝑒𝑠𝑡

2.4.4 Removing files/Stores

Sometimes a Store or file is unmatched on the other side, either because it is newly added or because a Store or
file has been removed.

You can remove Stores or files that do not have a corresponding match:

(env) $ pootle fs myproject rm_translations
(env) $ pootle fs myproject sync_translations

This will not affect any other Stores or files.

2.4. Resolving conflicts 7



pootle𝑓𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑙𝑎𝑡𝑒𝑠𝑡

8 Chapter 2. Pootle filesystem Workflow



CHAPTER 3

Pootle FS commands

Pootle FS commands

9



pootle𝑓𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑙𝑎𝑡𝑒𝑠𝑡

10 Chapter 3. Pootle FS commands



CHAPTER 4

fs command

Get FS info for all projects

pootle fs

11



pootle𝑓𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑙𝑎𝑡𝑒𝑠𝑡

12 Chapter 4. fs command



CHAPTER 5

set_fs subcommand

Set the FS for a project. Project must exist in Pootle.

pootle fs myproject set_fs git git@github.com:translate/myprojrepo

13



pootle𝑓𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑙𝑎𝑡𝑒𝑠𝑡

14 Chapter 5. set_fs subcommand



CHAPTER 6

info subcommand

Get the FS info for a project. This is the default command - so info can be ommitted.

pootle fs myproject info

or...

pootle fs myproject

15



pootle𝑓𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑙𝑎𝑡𝑒𝑠𝑡

16 Chapter 6. info subcommand



CHAPTER 7

config subcommand

Print out the project FS configuration

pootle fs myproject config

--update -u Update the configuration from the FS .pootle.ini file

17



pootle𝑓𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑙𝑎𝑡𝑒𝑠𝑡

18 Chapter 7. config subcommand



CHAPTER 8

status subcommand

List the status of files in Pootle and FS

pootle fs myproject status

19



pootle𝑓𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑙𝑎𝑡𝑒𝑠𝑡

20 Chapter 8. status subcommand



CHAPTER 9

fetch_translations subcommand

Pull the FS repository if required, and on reading the .pootle.ini configuration file, create FSStore objects to
track the associations.

pootle fs myproject fetch_translations

This command is the functional opposite of the add_translations command.

This command does not add any translation files in the FS - for that you need to sync_translations.

--force Stage files from FS that are conflicting

21



pootle𝑓𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑙𝑎𝑡𝑒𝑠𝑡

22 Chapter 9. fetch_translations subcommand



CHAPTER 10

add_translations subcommand

Add translations from Pootle into FS, using an optional pootle_path argument to filter which translations to add.

This command is the functional opposite of the fetch_translations command.

If you use the --force option it will add new translations from Pootle that are already present in the FS.

This command does not add any translation files in the FS - for tht you need to push_translations.

--force Stage files from Pootle that are conflicting

23



pootle𝑓𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑙𝑎𝑡𝑒𝑠𝑡

24 Chapter 10. add_translations subcommand



CHAPTER 11

merge_translations subcommand

Stage for merging any matched Stores/files that have either both been added or have both been updated

pootle fs myproject merge_translations

--pootle-wins Use the Pootle version for units that have conflicting changes.

25



pootle𝑓𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑙𝑎𝑡𝑒𝑠𝑡

26 Chapter 11. merge_translations subcommand



CHAPTER 12

rm_translations subcommand

Stage for removal any matched Stores/files that do not have a corresponding Store/file in Pootle/FS.

pootle fs myproject rm_translations

27



pootle𝑓𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑙𝑎𝑡𝑒𝑠𝑡

28 Chapter 12. rm_translations subcommand



CHAPTER 13

sync_translations subcommand

Synchronize translations between FS and Pootle:

• Create stores in Pootle where they dont exist already

• Update exisiting stores from FS translation file

• Create files where not present

• Update existing files where Stores have changed

• Remove files/Stores staged for removal

pootle fs myproject sync_translations

29



pootle𝑓𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑙𝑎𝑡𝑒𝑠𝑡

30 Chapter 13. sync_translations subcommand



CHAPTER 14

Path options

--pootle_path -P Only show/affect files where the pootle_path matches a given file glob.

--path -p Only show/affect files where the FS path matches a given file glob.

31



pootle𝑓𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑙𝑎𝑡𝑒𝑠𝑡

32 Chapter 14. Path options



CHAPTER 15

Pootle FS status

Possible status

conflict Both the pootle revision has changed since last sync and the latest_hash of the file has changed. The next
step would be to fetch_translations or add_translations using --force to keep the FS version
or Pootle version respectively.

conflict_untracked A conflict can also arise if a file on the FS has status fs_untracked and a match-
ing Store has status pootle_untracked in this case you can use either fetch_translations or
add_translations with --force depending on whether you want to keep the FS file or the Store.

pootle_untracked A new store has been added in Pootle and matches a translation_path in .
pootle.ini, but does not have any StoreFS sync configuration. The next step would be to use
add_translations to add a configuration.

pootle_added A new Store has been created in Pootle and has been staged using add_translations. It
has not yet been synced and does not exist in the FS. The next step would be to sync_translations to
sync this Store

pootle_changed A Store has changed in Pootle since the last sync. The next step would be to use
sync_translations to push these changes to the FS.

pootle_removed A previously synced Store has been removed. The next step is would be to either use
fetch_translations --force to restore the FS version, or to use rm_translations to stage for
removal from FS.

fs_untracked A new file has been added in FS and matches a translation_path in .pootle.ini, but
does not have any StoreFS sync configuration. The next step would be to use fetch_translations to
add a configuration. Alternatively, you can use rm_translations to stage for removal from FS.

fs_added A new file has been created in FS and has been staged using fetch_translations. It has not yet
been synced. The next step would be to sync_translations to create and sync this Store

fs_changed A file has changed in FS since the last sync. The next step would be to use sync_translations
to push these changes to the FS.

fs_removed A previously synced file has been removed from the FS. The next step is would be to either use
add_translations --force to restore the Pootle version, or to use rm_translations to stage for

33



pootle𝑓𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑙𝑎𝑡𝑒𝑠𝑡

removal from Pootle.

merge_fs Merge Stores/files that have both been updated. If there are conflicting units use the translation target
from the FS.

merge_pootle Merge Stores/files that have both been updated. If there are conflicting units use the translation
target from the Pootle.

to_remove A file or Store that does not have a corresponding Store/file that has been staged for removal.

both_removed A previously synced file has been removed from the FS and Pootle - effectively orphaned. We may
be able to use some kind of garbage collection to prevent this happening.

34 Chapter 15. Pootle FS status



CHAPTER 16

Pootle FS Git plugin

16.1 Installation

Currently only available for developer install:

https://github.com/translate/pootle_fs_git

The core pootle_fs app is also required (also dev only):

https://github.com/translate/pootle_fs

Currently also requires the no_mtime branch of pootle:

https://github.com/phlax/pootle/tree/no_mtime

16.2 Pootle configuration

(env) $ pootle fs MYPROJECT set_fs git GIT_URL

MYPROJECT should be the name of a project in your Pootle site.

GIT_URL should be git ssh url.

16.3 Git authentication

Currently only ssh authentication is supported.

The user running the pootle commands therefore must have a working ssh environment and read/write access to the
git repository in order to synchronize.

35

https://github.com/translate/pootle_fs_git
https://github.com/translate/pootle_fs
https://github.com/phlax/pootle/tree/no_mtime


pootle𝑓𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑙𝑎𝑡𝑒𝑠𝑡

16.4 Custom .pootle.ini options

When using the git pootle_fs plugin there are some git-specific options

[default]
commit_message = "A custom commit message..."
author_name = "My Self"
author_email = "me@my.domain"
committer_name = "Pootle Server"
committer_email = "pootle@my.server"

16.5 Further reading

• Workflow

• Status

• Commands

36 Chapter 16. Pootle FS Git plugin

../workflow.rst
../status.rst
../commands.rst

	Pootle FS Configuration
	Pootle filesystem Workflow
	Pootle FS commands
	fs command
	set_fs subcommand
	info subcommand
	config subcommand
	status subcommand
	fetch_translations subcommand
	add_translations subcommand
	merge_translations subcommand
	rm_translations subcommand
	sync_translations subcommand
	Path options
	Pootle FS status
	Pootle FS Git plugin

